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Note that the determined best fit is independent  of  
the par t icular  pair  of  base vectors. The resulting vector 
meets the requirements  of  case 24. The result vector 
is converted to the reduced cell (8.45, 9.98, 9.98, 
112.4, 106-4, 106-4) which is the best least-squares fit 
of  the original cell to case 24. The corresponding 
unreduced rhombohedra l  cell has a =9.98A, a = 
112-4 °. 

The error  of  the fit can be computed in two ways: 
either the reduced vector can be projected onto a set 
of  G 6 base vectors normal  to the base vectors of  the 
part icular  case (the length of  the sum of  the projec- 
tions being the error),  or the length of  the difference 
between the best-fit vector and the G 6 vector before 
projection can be computed.  The latter difference is 

- 0 . 6 9  70.70 71.39 

0.43 100.00 99.57 

0.43 100.00 99.57 

0.87 - 7 4 . 9 0  -75 .77  

0-30 - 4 7 . 3 0  - 4 7 . 6 0  

- 0 . 9 0  - 4 8 . 5 0  - 4 7 . 6 0  

with a length of  1-6 A (from the reduced vector to 
the best fit in case 24). In practice, this length should 
be compared  with the error  computed from the deter- 
minat ion of  the unit-cell parameters .  For small 
molecules, diffractometers normally produce error 
vectors with lengths in the range 0.05 to 0.4 A 2. On 
the basis of  this rule of  thumb,  the proposal  that  the 
original cell is rhombohedra l  should probably  be 
rejected in the absence of  other  evidence. Certainly 
the differences in the original angles are outside the 
usual error bounds  for diffractometers.  
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Abstract  

In direct methods  difficulties can be experienced in 
solving structures in si tuations where da ta  of  high 
resolution are being used very early in the phasing 
process; in real space, this tends to build too much 
atomic detail before the molecular  outline is fully 

defined by the lower-angle reflections, as well as 
involving E magni tudes  which have high s tandard  
deviations. The problem can be exacerbated in situ- 
ations where the da ta  extend beyond the Cu sphere - 
often collected using high-intensity X-ray tubes. Prob- 
lems can also be encountered with very low-angle 
data  because of  solvent effects and data  measurement  
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problems. A simple weighting scheme and a Bragg- 
angle cut-off procedure are presented which alleviate 
these problems. 

1. Introduction 

In direct methods difficulties can be experienced 
when solving structures in situations where data of 
high resolution are being used early in the phasing 
process. There are two reasons for this: 

(1) Use of high-angle reflections in this way has 
the effect of attempting to build very precise atomic 
detail in real space before the molecular outline has 
been fully defined and fixed by the lower-order reflec- 
tions. We are currently carrying out research into the 
maximum entropy (ME) method as a technique for 
ab initio phasing of small molecules. Although there 
are highly significant differences, at one level this 
formalism can be considered as a real-space 
equivalent of traditional reciprocal-space direct 
methods. In the ME method it is important to work 
in resolution shells starting with low-resolution data; 
any attempt to use high-angle reflections early in the 
process builds atomic resolution into the method too 
early and causes instability. A similar phenomenon 
occurs in reciprocal space with traditional methods, 
often manifesting itself as a single very large peak in 
the final E map(s). 

(2) The E magnitude (IEhl) used in direct methods 
is defined as 

N 
E~=kF2/e  • J ] e x p [ - 2 B ( s i n  20)/A 2] (1) 

)=1 

where k is a scale factor, e a correction for point- 
group symmetry, Fh is the observed structure factor, 
fj the scattering factor for atom j, N is the number 
of atoms in the unit cell, and B is the overall tem- 
perature factor, assumed isotropic. 

The normalization procedure usually estimates k 
and B via a Wilson plot (Wilson, 1949). This method 
gives only approximate values of these parameters. 
Whereas the error in k is uniformly distributed 
throughout the E magnitudes independently of Bragg 
angle, any error in B will give rise to an error which 
increases with angle. This can be seen clearly when 
standard deviations are calculated for the E magni- 
tudes. The alternative K-curve method (Karle & 
Hauptman, 1953) will also give E magnitudes whose 
variance increases with angle because the average 
structure factor has a higher variance at high angle. 

Direct methods use the three-phase structure 
invariants 

~ h  "~- ~ k  -~- ~ - h - k  = (g)3 (2) 

and the four-phase structure invariants (quartets): 

~ h  "lt- ~ k  "lt- (~1 "~- ~ - h - k - I  = (~)4 (3) 

where ~h is the phase angle of reflection h, qb 3 is 

usually assumed to be distributed around zero, whilst 
for the quartets the distribution of qb4 depends on the 
cross terms h + k ,  k + l  and l + h  (Schenk, 1973). 

The usual measure of triplet reliability is Zhk defined 
a s  

~hk = 21EhEkE-h-kl/N 1/2. (4) 

This is used either directly or in modified form in all 
direct-methods programs throughout the phasing pro- 
cess. Any error in the E magnitudes will generate a 
corresponding error in 'thk, and this will increase with 
the number of high-angle reflections involved in the 
invariant, so that relationships involving two or more 
high-resolution reflections are inherently more unre- 
liable than those involving lower-order reflections. 
The ghk value will not reflect this. A similar argument 
applies to the quartets. 

Problems also exist with very low-angle reflections. 
They are prone to error arising from solvent effects, 
extinction and measurement errors, so that the 
invariants involving them are similarly subject to 
error. 

There are methods for estimating cos 43, usually 
via a quintet extension (Hauptman, 1972, 1985; Gil- 
more & Hauptman, 1985), quadrupoles (Viterbo & 
Woolfson, 1973), representation theory (Giacovazzo, 
1976, 1977; Cascarano, Giacovazzo, Camalli, Spagna, 
Burla, Nunzi & Polidori, 1984) or determinantal 
methods (Messager & Tsoucaris, 1972; Karle, 1979, 
1980). All these methods have many features in com- 
mon: they need empirical scale factors, they are very 
approximate and slow to compute, and they do not 
treat the fundamental difficulties described above. We 
describe here a method which avoids all these prob- 
lems, and is more reliable. 

2. Filtering structure invariants 

Three filtering methods have been used: 
(1) A notch filter consisting of defining a maximum 

value of c -- (sin 2 0)/A 2. Any triplets or quartets which 
involve two or more reflections above this limit are 
excluded from the phasing process (both convergence 
mapping and tangent refinement). The value of c is 
user adjustable but a value corresponding to the 
Cu sphere for high-resolution data sets or 
0"95[ ( s in20) /A2]m.~  x in other cases is a suitable 
default. A similar filter can be applied to very low- 
order reflections. 

(2) A weighting scheme in which each E magnitude 
is given an associated weight Wh, where 

Wh = 1"0 (sin 2 0 ) / A 2 -  < c 

Wh = {(sin 2 0) /AZ-[ (s in  2 0 ) / A 2 ] m a x }  

x { [ c -  (sin 2 0 ) / / ~ 2 ] m a x }  -1 

(sin 2 0) /A2> c. 
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Table 1. Crystallographic data for the seven structures selected for study 

St ruc ture  Space  g r o u p  M o l e c u l a r  f o r m u l a  Z 

AZET P e a 2 1  C21HI6CINO 8 

PGE2 PI C2oH320~ 1 
GOLDMAN2 Cc C28HI6 8 
BED2 14 C26H26N40 2 8 
NO55 Fdd2 C2oH24N4 16 
APAPA P412t2 C3oH37NIsO16P 2.6H20 8 
TVAL P1 C54HgoN60~8 2 
WI NTER2 P2t C52H83 N~ iOi6.3C H2CI2 2 

Reference 
Colens, Declercq, Germain, Putzeys & Van Meerssche 
(1974) 
DeTitta, Langs, Edmonds & Duax (1980) 
Irngartinger, Reibel & Sheldrick (1981) 
Sheldrick, Davison & Trotter (1978) 
Sheldrick & Trotter (1978) 
Suck, Manor & Saenger (1976) 
Karle (1975) 
Butters, Hiitter, Jung, Pauls, Schmitt, Sheldrick & Winter 
(1981) 

Table 2. Figures of  merit and the number of  atoms found for solutions which yield the best E map 

Missing values for PGE2 and TVAL arise from a lack of suitable relationships to give reliable figures of merit. 

Number of Rank of 
Structure ABSFOM Psi-zero Resid N q e s t  atoms/total solution 
AZET 1.84 3-23 49.0 -0.07 16/48 1 
PGE2 1"33 - 25.3 -0-09 12/25 I 
GOLDMAN2 1.15 2-10 28.3 -0.05 17/56 2 
BED 1" 12 1.19 23"0 -0 .16 19/38 2 
NO55 - - - 0/24 None 
APAPA 1.07 1-16 26.7 -0 .09 26/63 1 
TVAL 1.25 - 22.8 - 80/156 1 

Table 3. Figures of  merit and the number of  atoms found when using the cut-off method or the weighting scheme 

Number of Rank of 
Structure ABSFOM Psi-zero Resid N q e s t  atoms/total solution 
AZET 1"58 2'71 37.9 -0"06 31/48 1 
PGE2 1-33 - 25-3 -0"08 15/25 1 
GOLDMAN2* 1"14 0"86 18"8 0-01 56/56 1 
BED 1" 14 1" 18 22"7 -0" 17 21/38 2 
NO55 0"66 1"70 28"3 -0"03 21/24 1 
APAPA 1.09 1" 10 25" 1 -0"05 20/63 1 
TVAL* 1"28 - 23' 1 - 80/156 I 

* Cut-off method used. 

The constant c is defined above. This funct ion is 
shown diagrammat ica l ly  in Fig. 1. The weight is then 
incorporated in the /hk value as 

gnk = 2 Wh Wk W_,_kJ Eh Ek E-h-kl/ N1/ 2 

and this /hk is used throughout  convergence mapping ,  
tangent formula  refinement and any other method 
that utilizes Ink'S. 

(3) A step filter which removes very low-angle 
reflections. 

Weight 
wu 

0"0 [(sin I O)/A2lm,. 
(sin ~ f l ) /  ~t 2 

Fig. 1. The weighting scheme. Dashed line shows the cut-off 
scheme. 

All these options are available in a new version of  
the MITHRIL  program (Gilmore,  1984). 

3. Application to known and unknown structures 

Both methods  were appl ied  to seven structures in the 
database of  difficult structures compiled by Sheldrick. 
Table 1 tabulates the salient feature of these struc- 
tures. Table 2 tabulates the results of  the best solutions 
which could be found using MITHRIL. In all cases 
but one a solution was possible, but sometimes 
difficult to d e t e c t - i n  part icular  AZET and GOLD-  
M A N 2 - a n d  often the figures of merit  were 
sufficiently poor to discourage the calculat ion and 
investigation of  the corresponding E map. The appli-  
cation of  cut-otis and weighting schemes is listed in 
Table 3. All the structures are now readily solvable, 
al though in the case of  APAPA there is a small  
deterioration in E-map quality. The figures of  merit  
are also better behaved,  giving values which are more 
in line with those expected for correct solutions, and 
thus encouraging the investigation of the correspond- 
ing E maps.  

The method  has also been appl ied to a hitherto 
unsolved structure. The polypept ide  M O R N O N  has 
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the formula  C91H158N23024 and crystallizes in space 
group C2221 with Z = 8. There are 138 non-hydrogen 
atoms in the asymmetr ic  unit and the da ta  extend to 
0.8A resolution. Exhaustive trials with various direct- 
methods techniques were unsuccessful.  The weighting 
scheme was used for both triplets and negative quar- 
tets; magic-integer phase permutat ion was used with 
11 reflections in the starting set. A total of  640 phase 
sets was generated,  and the best solution yielded an 
E map in which 52 atoms were clearly visible. The 
structure was completed by s tandard Fourier  tech- 
niques. 

The filtering of  very low-order reflections is, in 
general, much less successful, largely because we are 
trying to encourage direct methods to build a 
molecular  shape as early as possible. However,  in the 
case of WI NTER2 (Table 1), removing all reflections 
with (sin 2 0 ) / A 2 < 0 . 0 1 6  produced an E map  in which 
50 out of  88 non-hydrogen atoms were located. It is 
worth noting that this is the only structure tested that 
has a disordered solvent of appreciable scattering 
power. This type of filter could be of  general applica- 
bility in these circumstances.  

4. Concluding remarks 

This method is simple to apply and can be very 
effective. It requires no extra computing time except 
in cases when the scheme filters so many reflections 
that the convergence map becomes f ragmented with 
many gaps. In these circumstances a larger starting 
set is necessary with a corresponding increase in 
computer  time. There is no clear distinction between 
the efficacy of  the weighting scheme or the cut-off 
method - sometimes one technique works and some- 
times the other, as is the nature of  direct methods.  

Because of  the small associated overheads,  we recom- 
mend this technique as a routine option to be used 
in cases of  difficulty. 
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Abstract 

Recent advances describing X-ray line profiles 
analytically, in terms of  a minimum number  of  param- 
eters, are related to a theory based upon correlated 
dislocations. It is shown that a multiple convolution 
approach,  based upon the War ren -Averbach  ( W - A )  
analysis, leads to a form that closely approximates  

the strain coefficient obtained by Krivoglaz, 
Mar tynenko & Ryaboshopka  [Phys. Met.  Metall. 
(1983), 55, 1-12]. This connection enables one to 
determine the dislocation density and the ratio of  the 
correlation range parameter  to the mean particle size. 
These two results are obtained most accurately from 
previous analytical  approaches  which make  use of  a 
statistical least-squares analysis. The W - A  Fourier- 
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